Mathematics

MPC3

Unit Pure Core 3

Friday 15 January $2010 \quad 1.30$ pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables
- an insert for use in Question 2 (enclosed).

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC3.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- Fill in the boxes at the top of the insert.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 A curve has equation $y=\mathrm{e}^{-4 x}\left(x^{2}+2 x-2\right)$.
(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \mathrm{e}^{-4 x}\left(5-3 x-2 x^{2}\right)$.
(3 marks)
(b) Find the exact values of the coordinates of the stationary points of the curve.
(5 marks)

2 [Figure 1, printed on the insert, is provided for use in this question.]
(a) (i) Sketch the graph of $y=\sin ^{-1} x$, where y is in radians. State the coordinates of the end points of the graph.
(ii) By drawing a suitable straight line on your sketch, show that the equation

$$
\sin ^{-1} x=\frac{1}{4} x+1
$$

has only one solution.
(b) The root of the equation $\sin ^{-1} x=\frac{1}{4} x+1$ is α. Show that $0.5<\alpha<1$.
(c) The equation $\sin ^{-1} x=\frac{1}{4} x+1$ can be rewritten as $x=\sin \left(\frac{1}{4} x+1\right)$.
(i) Use the iteration $x_{n+1}=\sin \left(\frac{1}{4} x_{n}+1\right)$ with $x_{1}=0.5$ to find the values of x_{2} and x_{3}, giving your answers to three decimal places.
(2 marks)
(ii) The sketch on Figure 1 shows parts of the graphs of $y=\sin \left(\frac{1}{4} x+1\right)$ and $y=x$, and the position of x_{1}.

On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of x_{2} and x_{3} on the x-axis.
(2 marks)

3 (a) Solve the equation

$$
\operatorname{cosec} x=3
$$

giving all values of x in radians to two decimal places, in the interval $0 \leqslant x \leqslant 2 \pi$.
(b) By using a suitable trigonometric identity, solve the equation

$$
\cot ^{2} x=11-\operatorname{cosec} x
$$

giving all values of x in radians to two decimal places, in the interval $0 \leqslant x \leqslant 2 \pi$. (6 marks)

4 (a) Sketch the graph of $y=|8-2 x|$.
(b) Solve the equation $|8-2 x|=4$.
(c) Solve the inequality $|8-2 x|>4$.

5 (a) Use the mid-ordinate rule with four strips to find an estimate for $\int_{0}^{12} \ln \left(x^{2}+5\right) \mathrm{d} x$, giving your answer to three significant figures.
(b) A curve has equation $y=\ln \left(x^{2}+5\right)$.
(i) Show that this equation can be rewritten as $x^{2}=\mathrm{e}^{y}-5$.
(ii) The region bounded by the curve, the lines $y=5$ and $y=10$ and the y-axis is rotated through 360° about the y-axis. Find the exact value of the volume of the solid generated.
(c) The graph with equation $y=\ln \left(x^{2}+5\right)$ is stretched with scale factor 4 parallel to the x-axis, and then translated through $\left[\begin{array}{l}0 \\ 3\end{array}\right]$ to give the graph with equation $y=\mathrm{f}(x)$. Write down an expression for $\mathrm{f}(x)$.

6 The functions f and g are defined with their respective domains by

$$
\begin{array}{ll}
\mathrm{f}(x)=\mathrm{e}^{2 x}-3, & \text { for all real values of } x \\
\mathrm{~g}(x)=\frac{1}{3 x+4}, & \text { for real values of } x, \quad x \neq-\frac{4}{3}
\end{array}
$$

(a) Find the range of f.
(b) The inverse of f is f^{-1}.
(i) Find $\mathrm{f}^{-1}(x)$.
(ii) Solve the equation $\mathrm{f}^{-1}(x)=0$.
(c) (i) Find an expression for $\mathrm{gf}(x)$.
(ii) Solve the equation $\operatorname{gf}(x)=1$, giving your answer in an exact form. (3 marks)

7 It is given that $y=\tan 4 x$.
(a) By writing $\tan 4 x$ as $\frac{\sin 4 x}{\cos 4 x}$, use the quotient rule to show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=p\left(1+\tan ^{2} 4 x\right)$, where p is a number to be determined.
(b) Show that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=q y\left(1+y^{2}\right)$, where q is a number to be determined. (5 marks)

8 (a) Using integration by parts, find $\int x \sin (2 x-1) \mathrm{d} x$.
(b) Use the substitution $u=2 x-1$ to find $\int \frac{x^{2}}{2 x-1} \mathrm{~d} x$, giving your answer in terms of x. (6 marks)

END OF QUESTIONS

